Given equation: 3x2+12x+(m+7)=0
For equal roots, Discriminant (D)=0 where D=b2−4ac
On comparing 3x2+12x+(m+7)=0 with ax2+bx+c=0, we get a=3,b=12 and c=m+7
D=(12)2−4×3(m+7)=0
⇒144−12m−84=0
⇒m=6012=5
Putting value of m in given equation, we get
3x2+12x+12=0
⇒x2+4x+4=0
⇒(x+2)2=0 {∵a2+2ab+b2=(a+b)2}
⇒x+2=0
⇒x=−2
∴m=5 and x=−2.