The correct option is A 12
sin(x)=sin2x
sin(x)=2sin(x).cos(x)
sin(x)[2cos(x)−1]=0
sin(x)=0 and cos(x)=12
x=0,π and x=π3 ...(i)
Hence there are 3 solutions.
S(3)
sin(x)=sin3x
sin3x−sinx=0
2cos(2x).sinx=0
sin(x)=0 and cos(2x)=0
x=0,π and x=π4,3π4
Hence number of solutions are 4.
S(4)
sin(x)=sin4x
sin4x−sinx=0
2cos(5x2).sin(3x2)=0
x=0,2π3 and x=π5,3π5,π
Hence number of solutions are 5.
Thus S(2)+S(3)+S(4)
=3+4+5
=12.