For each of the differential equation in given question find the general solution.
sec2x tany dx+sec2y tanx dy=0
Given, sec2x tany dx+sec2y tanx dy=0
On separating the variables, we get
⇒sec2x tany dx=−sec2y tanxdy⇒sec2x tanxdx=−sec2y tanydy
On integarting both sides, we get ∫sec2x tanxdx=−∫sec2y tanydyLet tanx=u⇒sec2x=dudx⇒dx=dusec2xand tany=v⇒sec2y=dvdy⇒dy=dvsec2y∫sec2xudusec2x=−∫sec2yvdvsec2y⇒∫duu=−∫dvv⇒log|u|=−log|v|+log|C|⇒log|tanx|=−log|tany|+log|C|⇒log|tanx tany|=log|C| [∵logm+logn=logmn]⇒tanx.tany=C
which is the required general solution.