(1) dydx+2y=sinθdydx+Py=QI.F=e∫Pdx=e2xG.S=y(I.F)=∫Q(I.F)dx⇒axsinbx=aaxa2+b2x⇒(asinbx−bcosbx)+Cy(e2x)=∫sinxe2xdxy(e2x)=e2x5(2sinx−cosx)+C2.dydx+3y=e−2xdydx+Py=QI.F=e∫Pdx=e2x=e3xG.S=y(I.F)=∫Q(I.F)dx=y(e3x)=∫e−2xe3xdx=y(e3x)=∫exdx=y(e3x)=ex+C3.dydx+yx=x2dydx+Py=QI.F=e∫Pdx=e∫1xdx=elogx=xG.S=y(I.F)=∫Q(I.F)dx=y(x)=∫x2(x)dx=xy=x33+C=x3−3xy+k=04.dydx+(secx)y=tanxdydx+Py=QI.F=e∫secxdx=elog|secx+tanx|=secx+tanxG.S=y(I.F)=∫Q(I.F)dx⇒y(secx+tanx)=∫secxtanxdx+∫tan2dx=secx+∫(sec2x−1)dx⇒y(secx+tanx)=secx+tanx−x+C5.cos2dydx+y=tanxdydx+sec2x(y)=tanxcos2x=sinxcos3xI.F=e∫pdx=e∫sec2xdx=etanxG.S=y(I.F)=∫Q(I.F)dx=y(etanx)=∫tanxetanxsec2dx=y(etanx)=∫tanxsec2xetanxdx+Clettanx=tsec2xdx=dtyet=∫tetdt+C⇒yetanx=(tanx−1)etanx+C
6.xdydx+2y=x2logxdydx+2x(y)=xlogxdydx+Py=QI.F=e∫Pdx=e∫2xdx=e2logx=x2G.Sy(I.F)=∫Q(I.F)dx=y(x2)=∫x3logxdxy(x2)=logx(x44)−∫1x(x44)dxx2y=x4logx4−116x4+C7.xlogx+y=2xlogxdydx+1xlogx(y)=2x2I.F=e∫1xlogxdx=logxG.Sy(I.F)=∫Q(I.F)dx=y(logx)=∫2x2logxdx=∫1x2logxdx=logx(−1x)−∫1x(−1x)dx=−logx(1x)+∫1x2dx=−1xlogx−1xCsolution⇒y(logx)=−1xlogx−1x+C8.(1+x2)dy+2xydx=cotxdx(1+x2)dydx=cotx−2xydydx+(2x1+x2)y=cotx1+x2I.F=e∫Pdx=e∫2x1+x2dx=1+x2G.Sy(I.F)=∫Q(I.F)dxy(1+x2)=∫cotx1+x2×1+x2dxy(1+x2)=log|sinx|+C9.xdydx+y−x+xycotx=0dydx+1x(y)−1+ycotx=0dydx+[1x+cotx]y=1I.F=e∫Pdx=e∫1x+cotxdx=elogx+log⌊sinx⌋G.Sy(I.F)=∫Q(I.F)dx=y(xsinx)=∫xsinxdx=y(xsinx)=−xcosx+sinx+C10.(x+y)dydx=1dydx−x=ydydx+Px=QI.F=e∫Pdy=e∫−1dy=e−yG.S=x(e−y)=∫ye−ydyx(e−y)=−ye−y−e−y+C
11.ydx+(x−y2)dy=0ydx+(y2−x)dydxdy=y−xydxdy+xy=yI.F=e∫Pdy=e∫1ydy=yG.S=x(y)=∫y(y)dy=x(y)=y33+C12.(x+3y2)dydx=ydxdy=xy+3ydxdy−xy=3yI.F=e∫Pdy=e∫−1ydy=1yG.S=x(1y)=∫3y(1y)dyxy=3y+C