wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

For each of the differential equations, find the general solution:
1. dydx+2y=sinx
2. dydx+3y=e2x
3. dydx+yx=x2
4. dydx+(secx)y=tanx ...(0x<π2)
5. cos2xdydx+y=tanx ...(0x<π2)
6. xdydx+2y=x2logx
7. xlogxdydx+y=2xlogx
8. (1+x2)dy+2xydx=cotxdx ...(x0)
9. xdydx+yx+xycotx=0 ...(x0)
10. (x+y)dxdy=1
11. ydx+(xy2)dy=0
12. (x+3y2)dydx=y ...(y>0)

Open in App
Solution

(1) dydx+2y=sinθdydx+Py=QI.F=ePdx=e2xG.S=y(I.F)=Q(I.F)dxaxsinbx=aaxa2+b2x(asinbxbcosbx)+Cy(e2x)=sinxe2xdxy(e2x)=e2x5(2sinxcosx)+C2.dydx+3y=e2xdydx+Py=QI.F=ePdx=e2x=e3xG.S=y(I.F)=Q(I.F)dx=y(e3x)=e2xe3xdx=y(e3x)=exdx=y(e3x)=ex+C3.dydx+yx=x2dydx+Py=QI.F=ePdx=e1xdx=elogx=xG.S=y(I.F)=Q(I.F)dx=y(x)=x2(x)dx=xy=x33+C=x33xy+k=04.dydx+(secx)y=tanxdydx+Py=QI.F=esecxdx=elog|secx+tanx|=secx+tanxG.S=y(I.F)=Q(I.F)dxy(secx+tanx)=secxtanxdx+tan2dx=secx+(sec2x1)dxy(secx+tanx)=secx+tanxx+C5.cos2dydx+y=tanxdydx+sec2x(y)=tanxcos2x=sinxcos3xI.F=epdx=esec2xdx=etanxG.S=y(I.F)=Q(I.F)dx=y(etanx)=tanxetanxsec2dx=y(etanx)=tanxsec2xetanxdx+Clettanx=tsec2xdx=dtyet=tetdt+Cyetanx=(tanx1)etanx+C

6.xdydx+2y=x2logxdydx+2x(y)=xlogxdydx+Py=QI.F=ePdx=e2xdx=e2logx=x2G.Sy(I.F)=Q(I.F)dx=y(x2)=x3logxdxy(x2)=logx(x44)1x(x44)dxx2y=x4logx4116x4+C7.xlogx+y=2xlogxdydx+1xlogx(y)=2x2I.F=e1xlogxdx=logxG.Sy(I.F)=Q(I.F)dx=y(logx)=2x2logxdx=1x2logxdx=logx(1x)1x(1x)dx=logx(1x)+1x2dx=1xlogx1xCsolutiony(logx)=1xlogx1x+C8.(1+x2)dy+2xydx=cotxdx(1+x2)dydx=cotx2xydydx+(2x1+x2)y=cotx1+x2I.F=ePdx=e2x1+x2dx=1+x2G.Sy(I.F)=Q(I.F)dxy(1+x2)=cotx1+x2×1+x2dxy(1+x2)=log|sinx|+C9.xdydx+yx+xycotx=0dydx+1x(y)1+ycotx=0dydx+[1x+cotx]y=1I.F=ePdx=e1x+cotxdx=elogx+logsinxG.Sy(I.F)=Q(I.F)dx=y(xsinx)=xsinxdx=y(xsinx)=xcosx+sinx+C10.(x+y)dydx=1dydxx=ydydx+Px=QI.F=ePdy=e1dy=eyG.S=x(ey)=yeydyx(ey)=yeyey+C

11.ydx+(xy2)dy=0ydx+(y2x)dydxdy=yxydxdy+xy=yI.F=ePdy=e1ydy=yG.S=x(y)=y(y)dy=x(y)=y33+C12.(x+3y2)dydx=ydxdy=xy+3ydxdyxy=3yI.F=ePdy=e1ydy=1yG.S=x(1y)=3y(1y)dyxy=3y+C


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
General and Particular Solutions of a DE
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon