1) dydx=1−cosx1+cosx
∫dy=∫[(1−cosx)(1+cosx))]dx
∫dy=∫2sin2(x2)2cos2(x2)dx
∫dy=∫tan2(x2)dx=∫(sec2(x2−1)dx
=∫sec2(x2−1)dx
=2tan(x2−1)+c
y=2tan(x2−1)+c
2) dydx=√4−y2(−2<y<2)
⇒dy√4−y2=dx
⇒dy√1−(y2)2=dx
Let y2=t
Thus dy=2dt
⇒2dt√1−t2
⇒∫2dt√1−t2=∫dx
=2sin−1(f)=x+c
=2siny(y2=x+c
3) dydx=1(y≠1)
∫dy=∫dx
y=x≠c
4) sec2xtanydx+sec2ytanxdy=0
dydx=sec2xtanysec2ytanx
sec2ytantdy=−sec2xtanxdx
tany=u,tanx=u
sec2ydy=du, sec2xdx=dQ
⇒∫duu=duu
log(u)=n−log(Q)+logC
log(u)=log(cQ)
log(uQ)=log(C)
uQ=C
tanytanx=C
5) (ex+e−x)dy−(ex−e−x)dx=0
(ex+e−x)dy=(ex−e−x)dx
dydx=ex−e−xex+e−xdx
dy=ex−e−xex+e−xdx
Integrating both sides.
∫dx=∫ex−e−xex+e−xdx ...(1)
y=∫ex−e−xex+e−x
Let t=ex+e−x
dtdx=(ex−e−x)dx
dx=dtex−e−x
Substituting values in (1), we get
∫dy=∫ex−e−xtdtex−e−x
∫dy=∫dtt
y=log|t|+C
Putting back t=ex−e−x
y=log|ex−e−x|+C
y=log(ex−e−x)+C (∴ex−e−x>0)
6) dydx=(1+x2)(1+y2)⇒dy
⇒∫11+y2dy=∫(1+x2)dx
⇒tan−1(y)=x+x33+C
7) ylogydx−xdy=0
ylogydx=xdy
dxx=dyylogy
Intergrating both sides
∫dyylogy=∫dxx
Put t=logy
dt=1ydy
dy=ydt
Hence, our equation becomes
∫ydty.t=∫dxx
∫dtt=∫dxx
log|t|=log|x|+logc
Putting t=logy
log(logy)=logx+logc
log(logy)=logcx (Using logab=loga+logb)
logy=cx
y=ecx
8) x2dydx=−y5
∫dydx=∫dxxy⇒∫y−5dy=−∫dx
⇒y−4−4=x−3−3+c
⇒13x3+14y4+C=0
9) dydx=sin−1(x)⇒∫dy=∫sin−1(x)dx
So ∴∫sin−1(x)dx=xsin−1(x)+√1−x2
y=xsin−1(x)+√1−x2+c
10) extanydx+(1−ex)sec2ydy=0
extanydx=(ex−1)sec2ydy
∫sec2ytanydy=∫exex−1dx
tany=u,ex−1=Q
sec2ydy=du exdx=du
∫duu=∫duu
log(u)=log(Q)+log(C)
tany=(ex−1)=c