wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

For each of the differential equations, find the general solution:
1. dydx=1cosx1+cosx
2. dydx=4y2(2<y<2)
3. dydx=1(y1)
4. sec2xtanydx+sec2ytanxdy=0
5. (ex+ex)dy(exex)dx=0
6. dydx=(1+x2)(1+y2)
7. ylogydxxdy=0
8. x4dydx=y5
9. dydx=sin1x
10. extanydx+(1ex)sec2ydy=0

Open in App
Solution

1) dydx=1cosx1+cosx

dy=[(1cosx)(1+cosx))]dx

dy=2sin2(x2)2cos2(x2)dx

dy=tan2(x2)dx=(sec2(x21)dx

=sec2(x21)dx

=2tan(x21)+c

y=2tan(x21)+c

2) dydx=4y2(2<y<2)

dy4y2=dx

dy1(y2)2=dx

Let y2=t

Thus dy=2dt

2dt1t2

2dt1t2=dx

=2sin1(f)=x+c

=2siny(y2=x+c

3) dydx=1(y1)

dy=dx

y=xc

4) sec2xtanydx+sec2ytanxdy=0

dydx=sec2xtanysec2ytanx

sec2ytantdy=sec2xtanxdx

tany=u,tanx=u

sec2ydy=du, sec2xdx=dQ

duu=duu

log(u)=nlog(Q)+logC

log(u)=log(cQ)

log(uQ)=log(C)

uQ=C

tanytanx=C

5) (ex+ex)dy(exex)dx=0

(ex+ex)dy=(exex)dx

dydx=exexex+exdx

dy=exexex+exdx

Integrating both sides.

dx=exexex+exdx ...(1)

y=exexex+ex

Let t=ex+ex

dtdx=(exex)dx

dx=dtexex

Substituting values in (1), we get

dy=exextdtexex

dy=dtt

y=log|t|+C

Putting back t=exex

y=log|exex|+C

y=log(exex)+C (exex>0)


6) dydx=(1+x2)(1+y2)dy

11+y2dy=(1+x2)dx

tan1(y)=x+x33+C

7) ylogydxxdy=0

ylogydx=xdy

dxx=dyylogy

Intergrating both sides

dyylogy=dxx

Put t=logy

dt=1ydy

dy=ydt

Hence, our equation becomes

ydty.t=dxx

dtt=dxx

log|t|=log|x|+logc

Putting t=logy

log(logy)=logx+logc

log(logy)=logcx (Using logab=loga+logb)

logy=cx

y=ecx


8) x2dydx=y5

dydx=dxxyy5dy=dx

y44=x33+c

13x3+14y4+C=0


9) dydx=sin1(x)dy=sin1(x)dx

So sin1(x)dx=xsin1(x)+1x2

y=xsin1(x)+1x2+c

10) extanydx+(1ex)sec2ydy=0

extanydx=(ex1)sec2ydy

sec2ytanydy=exex1dx

tany=u,ex1=Q

sec2ydy=du exdx=du

duu=duu

log(u)=log(Q)+log(C)

tany=(ex1)=c


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
General and Particular Solutions of a DE
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon