wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

For each of the differential equations given, find a particular solution satisfying the given condition.
1. dydx+2ytanx=sinx:y=0 when x=π3
2. (1+x2)dydx+2xy=11+x2;y=0 when x=1
3. dydx3ycotx=sin2x;y=2 when x=π2

Open in App
Solution

1) dydx+2ytanx=sinx;y=0, when x=π3
4(x)=e2tanx.dx=2ln(x)=sec2x
sec2x(y1+2tanxy)=sinx.sec2x
(sec2x)1=sinx.sec2x
sec62x.y=x.sec2x.dx
sinx.1cos2x.dx
cosx=+
sinx.dx=d+
=dt+2=1+=1cosx+c
y=cosx+ccot2x
y(x=π3)=0
o=cos(π3)+ccos2(π3)
o=12+c.14
c=2
y(x)=cos(x)+cos2x

2) (1+x2)dydx+2xy=11+x2;y(x=1)=0
dydx=2x1+x62y=1(1+x2)2
4(x)=e2x1+x2.dx
=edt1+1=eln(1+1)
=(1+x2)
(1+x2)(y1+2x1+x2y)=1(1+x2)2.(1+x2)
((1+x2)y)1=11+x2
(1+x2)y=11+x2.dx
(1+x2)y=tan(x)+c
y=tan(x)1+n2+c1+x2
y(n=1)=o0=π22+c2
c=π4
y=tan(x)1+x2π4(1+x2)

3) dydx3ycotx=sinx;(y(x=x2)=2
4(x)=e3cotx.dx=3log|sinx|=1sin3x
1sin2x(y23ycotx)=sin$2xsin3x
[ysin3z]1=sinx2xsin3x
ysin3x=2cosxsinx.dx
sinx=+cosx.dx=d+
2dt+2
2+=2sinx=c
y=2sin2x+csin3x
y(x=π2)=2
2=2+c
c=4
y(x)=2sin2x+4sin3x


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
General and Particular Solutions of a DE
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon