wiz-icon
MyQuestionIcon
MyQuestionIcon
2
You visited us 2 times! Enjoying our articles? Unlock Full Access!
Question

For each of the exercises given below, verify that the given function (implicit or explicit) is a solution of the corresponding differential equation. (i) (ii) (iii) (iv)

Open in App
Solution

(i)

Given function is,

y=a e x +b e x + x 2

Differentiate both sides of equation.

dy dx =a d dx ( e x )+b d dx ( e x )+ d dx ( x 2 ) dy dx =a e x b e x +2x d 2 y d x 2 =a e x +b e x +2

The differential equation is,

x d 2 y d x 2 +2 dy dx xy+ x 2 2=0(1)

Substitute the value of dy dx and d 2 y d x 2 to the Left Hand Side of the above equation.

L.H.S.=x d 2 y d x 2 +2 dy dx xy+ x 2 2 =x( a e x +b e x +2 )+2( a e x b e x +2x )x( a e x +b e x + x 2 )+ x 2 2 =( ax e x +bx e x +2x )+( 2a e x 2b e x +4x )( ax e x +bx e x + x 3 )+ x 2 2 =2a e x 2b e x x 3 + x 2 +6x2

Further simplify.

L.H.S.=2a e x 2b e x x 3 + x 2 +6x2 0

Left hand side is not equal to right hand side.

Hence, given function is not solution of the corresponding differential equation.

(ii)

Given function is,

y= e x ( acosx+bsinx )

Differentiate both sides of equation.

dy dx =a d dx ( e x cosx )+b d dx ( e x sinx ) dy dx =a( e x cosx e x sinx )+b( e x sinx+ e x cosx ) dy dx =( a+b ) e x cosx+( ba ) e x sinx d 2 y d x 2 =( a+b ) d dx ( e x cosx )+( ba ) d dx ( e x sinx )

Further simplify,

d 2 y d x 2 =( a+b )[ e x cosx e x sinx ]+( ba )[ e x sinx+ e x cosx ] = e x { acosxasinx+bcosxbsinx+bsinx+bcosxasinxacosx } d 2 y d x 2 =[ 2 e x ( bcosxasinx ) ]

The differential equation is,

d 2 y d x 2 2 dy dx +2y=0(1)

Substitute the value of dy dx and d 2 y d x 2 to the Left Hand Side of the above equation.

L.H.S.=2 e x ( bcosxasinx )2 e x [ ( a+b )cosx+( ba )sinx ]+2 e x ( acosx+bsinx ) = e x [ ( 2bcosx2asinx )( 2acosx+2bcosx )( 2bsinx2asinx ) +( 2acosx+2bsinx ) ] = e x [ ( 2b2a2b+2a )cosx ]+ e x [ ( 2a2b+2a+2b )sinx ] =0

Left hand side is equal to right hand side.

Hence, given function is solution of the corresponding differential equation.

(iii)

Given function is,

y=xsin3x

Differentiate both sides of equation.

dy dx = d dx ( xsin3x ) =sin3x+xcos3x×3 =sin3x+3xcos3x d 2 y d x 2 = d dx ( sin3x )+ d dx ( 3xcos3x )

Further simplify.

d 2 y d x 2 =3cos3x+3{ cos3x+x( sin3x )×3 } =6cos3x9xsin3x

The differential equation is,

d 2 y d x 2 +9y6cos3x=0(1)

Substitute the value of d 2 y d x 2 to the Left Hand Side of the above equation.

L.H.S.= d 2 y d x 2 +9y6cos3x =( 6cos3x9xsin3x )+9xsin3x6cos3x =0

Left hand side is equal to right hand side.

Hence, given function is solution of the corresponding differential equation.

(iv)

Given function is,

x 2 =2 y 2 logy

Differentiate both sides of equation.

d dx ( x 2 )=2 d dx ( y 2 logy ) 2x=2{ 2ylogy dy dx + y 2 × 1 y × dy dx } x= dy dx { 2ylogy+y } dy dx = x y( 1+2logy )

The differential equation is,

( x 2 + y 2 ) dy dx xy=0(1)

Substitute the value of dy dx to the Left Hand Side of the above equation.

L.H.S.=( 2 y 2 logy+ y 2 )× x y( 1+2logy ) xy = y 2 ( 1+2logy ) x y( 1+2logy ) xy =xyxy =0

Left hand side is equal to right hand side.

Hence, given function is solution of the corresponding differential equation.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Formation of Differential Equation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon