wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

For each of the following differential equations, find a particular solution satisfying the given condition:
(i) xx2-1dydx=1, y=0 when x=2

(ii) cosdydx=a, y=1 when x=0

(iii) dydx=y tan x, y=1 when x=0

Open in App
Solution

i We have,xx2-1dydx=1 dydx=1xx2-1dy=1xx2-1dxIntegrating both sides, we getdy=1xx2-1dxy=1xx2-1dx+Cy=1xx+1x-1dx+C .....1Let 1xx+1x-1=Ax+Bx+1+Cx-11=Ax+1x-1+Bxx-1+Cxx+11=Ax2-1+Bx2-x+Cx2+x1=x2A+B+C+x-B+C-AComparing both sides, we get-A=1 .....2-B+C=0 .....3A+B+C=0 .....4Solving 2, 3 and 4, we getA=-1B=12C=121xx+1x-1=-1x+12x+1+12x-1Now, 1 becomesy=-1x+12x+1+12x-1dx+Cy=-1xdx+121x-1dx+121x-1dxy=-log x+12log x-1+12log x+1+Cy=12log x-1+12log x+1-log x+CGiven:y2=0 0=12log 2-1+12log 2+1-log 2+CC=log 2-12log 3Substituting the value of C, we gety=12log x-1+12log x+1-log x+log 2-12log 32y=log x-1+log x+1-2log x+2log 2-log 32y=log x-1+log x+1-log x2+log 4-log 32y=logx-1x+1x2-log3-log4y=12logx2-1x2-12log 34

ii We have,cos dydx=a dydx=cos-1 ady=cos-1 a dxIntegrating both sides, we getdy=cos-1 a dxy=x cos-1 a+CNow, When x=0, y=1 1=0+CC=1Putting the value of C in 1, we gety=x cos-1 a+1cosy-1x=a

iii We have,dydx=y tan x1ydy=tan x dxIntegrating both sides, we get1ydy=tan x dxlog y=log sec x+C ....1Now, When x=0, y=1 log 1=log 1+CC=0Putting the value of C in 1, we getlog y=log sec xy=sec x

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Higher Order Derivatives
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon