wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

For each of the following differential equations, find the general solution:
(i) dydx=1-cos x1+cos x

(ii) dydx=4-y2, -2<y<2

(iii) dydx=1+x21+y2

(iv) y log y dx − x dy = 0

(v) dydx=sin-1x

(vi) dydx+y=1

Open in App
Solution

i We have,dydx=1-cos x1+cos xdydx=2sin2 x22cos2 x2dydx=tan2 x2dy=tan2 x2dxIntegrating both sides, we getdy=tan2 x2dxdy=sec2 x2-1dxy= 2 tan x2-x+C

ii We have,dydx=4-y214-y2dy=dxIntegrating both sides, we get14-y2dy=dxsin-1 y2=x+Cy2=sin x+Cy=2sin x+C

iii We have,dydx=1+x21+y211+y2dy=1+x2dxIntegrating both sides, we get11+y2dy=1+x2dxtan-1 y=x+x33+C

iv We have,y log y dx-x dy=0y log y dx=x dy1xdx=1y log ydy1y log ydy=1xdxIntegrating both sides, we get1y log ydy=1xdx .....1Putting log y=t1ydy=dtTherefore 1 becomes1tdt=1xdxlog t=log x + log Clog log y=log x + log Clog log y=log Cxlog y=Cxy=eCx

v We have,dydx=sin-1xdy=sin-1xdxIntegrating both sides, we getdy=sin-1xdxdy=1II×sin-1xI dx dy=sin-1x1 dx-ddxsin-1x1 dxdxy=x sin-1x-x1-x2dxPutting t2=1-x2, we get2t dt=-2x dx-t dt=x dx y=x sin-1x+dty=x sin-1x+t+Cy=x sin-1x+1-x2+C

vi We have,dydx+y=1dydx=1-y11-ydy=dxIntegrating both sides, we get-1y-1dy=dx1y-1dy=-dxlog y-1=-x+log Clog y-1-log C=-xlog y-1C=-xy-1C=e-xy=1+Ce-x

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Standard Formulae 3
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon