For each of the given differential equation find the general solution.
dydx+ysecx=tanx(0≤x≤π2).
The given differential equation is dydx+ysecx=tanx(0≤x≤π2).
On comparing with the form dydx+Py=Q we get P=secx and Q=tanx
∴IF=e∫Pdx⇒e∫secxdx
⇒IF=elog|secx+tanx|=secx+tanx ..(i)
The solution of the given differential equation is given by
y.IF=∫Q×IFdx+C⇒y(secx+tanx)=∫tanx(secx+tanx)dx+C⇒y(secx+tanx)=∫tanx.secxdx+∫tan2xdx+C⇒y(secx+tanx)=secx+∫sec2xdx−∫1dx+c ∵tan2x=secx−1
⇒y(secx+tanx)=secx+tanx+C