wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

For each of the given differential equation find the general solution.
dydx+ysecx=tanx(0xπ2).

Open in App
Solution

The given differential equation is dydx+ysecx=tanx(0xπ2).
On comparing with the form dydx+Py=Q we get P=secx and Q=tanx
IF=ePdxesecxdx
IF=elog|secx+tanx|=secx+tanx ..(i)
The solution of the given differential equation is given by
y.IF=Q×IFdx+Cy(secx+tanx)=tanx(secx+tanx)dx+Cy(secx+tanx)=tanx.secxdx+tan2xdx+Cy(secx+tanx)=secx+sec2xdx1dx+c tan2x=secx1
y(secx+tanx)=secx+tanx+C


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Equations Reducible to Standard Forms
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon