yn=1n{(n+1)(n+2)......(n+n)}1n
This can be written as,
yn=n∏r=1(1+rn)1n
Taking log on both sides,
lnyn=n∑r=11nln(1+rn)⇒limn→∞lnyn=limn→∞n∑r=11nln(1+rn) =1∫0ln(1+x) dx
using integration by parts
⇒limn→∞lnyn=[(x+1){ln(x+1)−x}]10⇒lnL=2ln2−1=ln4e∴L=4e1<L<2
Hence [L]=1
Alternate solution:
We can say that,
yn<1n{(n+n)(n+n)......(n+n)}1n⇒yn<1n(2n)nn⇒yn<2
Now,
yn>1n{(n)(n)......(n)}1n⇒yn>1n(n)nn⇒yn>1
∴1<limn→∞yn<2⇒1<L<2
Hence [L]=1