For each set of rational numbers, given below, verify the associative property of addition of rational numbers:
(i) 12,23 and−16(ii) −25,415 and −710(iii) −79,2−3and −518(iv) −1,56~and −23
(i) 12,23 and−16Show that:12+(23+−16)=(12+23)−16∵12+(23+−16)
∴LCM of 3 and 6=6=12+(2×23×2+−1×16×1)=12+(46−16)=12+(4−16)=12+(36)=1×32×3+3×16×1 (∵LCM of 2 and 6=3)=3+36=66=1And,(12+23)+−16
∴LCM of 2 and 3=6=(1×32×3+2×23×2)+−16=3+46+−16=7−16=66=1∴12+(23+−16)+(12+23)+−16This verifies associative property of the addition of rational numbers.(ii) −25,415 and −710Sho that:−25+(415+−710)=(−25+415)+−710∵−25+(415+−710)
∴LCM of 15,10=2×3×5=30=−25+(4×215×2+−7×310×3) (∵LCM of 15 and 10=30)=−25+(8−2130)=−25−1330=−2×65×6−13×130×1=−12−1330=−2530=−56And,(−25+415)+−710
∴LCM of 5 and 15=15=−6+415+−710=−215+−710=−2×215×2−7×310×3=−430−2130=−2530=−56∴−25+(415+−710)=(−25+415)+−710This verifies associative property of the addition of rational numbers.(iii) −79,2−3and −518Show that:−79+(2−3+−518)=(−79+2−3)+−518∵−79+(2−3+−518)
∴LCM of 3 and 18=2×3×3=18=−79+(−2×63×6+−5×118×1) (∵LCM of 3 and 18=18)=−79+(−12−518)=−79+−1718=−7×29×2+17×118×1 (∵LCM of 9 and 18=18)=−14−1718=−3118And ,(−79+2−3)+−518
∴LCM of 3 and 9=3=(−7×19×1+−2×33×3)+−518 (∵LCM=9 and 3=9)=−7−69+−518=−139+−518=−13×29×2+−5×118×1=−26−518=−3118∴−79+(2−3+−518)=(−79+2−3)+−518This verifies associatevie property of the addition of rational numbers.(iv) −1,56~and −23Show that:−11+(56+−23)=(−11+56)+−23∵−11+(56+−23)
∴LCM of 6 and 3=6=−11+(5×16×1+−2×23×2) (∵LCM of and 3=6)=−11+(5−46)=−11+16=−1×61×6+1×16×1(∵LCM of 1 and 6=1)=−6+16=−56And,(−11+56)+−23=−(−1×61×6+5×16×1)+−23 (∵LCM of 1 and 6=6)=(−6+56)+−23=−16+−23=−1×16×1+−2×23×2(∵LCM of 6 and 3=6)=−1−46=−56∴−11(56+−23)=(−11+56)+−23This verifies associative poperty of the addition of rational numbers.