For each t∈R, let [t] be the greatest integer less than or equal to t .Then limx→0+x([1x]+[2x]+....[15x])
Finding the value of limx→0+x([1x]+[2x]+....[15x])
Given that t∈R,
limx→0+x([1x]-[1x]+[2x]-[2x]+....[15x]-[15x])=limx→0+(1+2+3+....+15-x([1x]+[2x]+....+[15x]))=120-limx→0+x([1x]+[2x]+...+[15x]){finitevalue}=120
Hence the value of limx→0+x([1x]+[2x]+....[15x]) is 120.