wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

For each the differential equations given, find the general solution :
cos2xdydx+y=tanx(0xπ2)

Open in App
Solution

cos2xdydx+y=tanx

dydx+(sec2x)y=sec2xtanx

dydx+Py=Q

P=sec2x,Q=sec2xtanx

I.F.=ePdx

=esec2xdx

=etanx

y×I.F=Q×I.Fdx+c

y×etanx=(sec2xtanx)(etanx)dx+c

yetanx=etanx(tanx1)+c

y=etanx+C

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Methods of Solving First Order, First Degree Differential Equations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon