dydx+(secx)y=tanx
I.F=e∫secxdx=elog(secx+tanx)=secx+tanx
y(secx+tanx)=∫(secxtanx+tan1x)
=secx+∫sec2x−1
=secx+tan−x
For each of the given differential equation find the general solution. dydx+ysecx=tanx(0≤x≤π2).