xlogxdydx+y=zxlogx
dydx+yxlogx=2x2
I.F=c∫pdx=c∫1xlogxdx
Let logx=t1xdx=dt
⇒I.F=c∫1tdt =t=logx
y.logx=∫2x2logx dx
logx=t 1xdx=dt
yt=2∫e−ttdt
yt=2(−c−t(1+t))
ylogx=2xdx=(1+logx).
For the given differential equation find the general solution. x logx dydx+y=2x logx