The correct option is C The circle is real, if 2a≥|z1−z2|2.
|z−z1|2+|z−z2|2=a
⇒z¯¯¯z−(¯¯¯¯¯z1+¯¯¯¯¯z22)z−(z1+z22)¯¯¯z+z1¯¯¯¯¯z1+z2¯¯¯¯¯z2−a2=0⋯(1)
Equation (1) is of the form of z¯¯¯z+¯¯¯az+a¯¯¯z+r=0.
Hence, centre =(z1+z2)2.
Also, equation (1) will represent a real circle, if a¯¯¯a−r>0
⇒|a|2−r>0
⇒|z1+z2|24≥z1¯¯¯¯¯z1+z2¯¯¯¯¯z2−a2
⇒z1¯¯¯¯¯z1+z1¯¯¯¯¯z2+¯¯¯¯¯z1z2+z2¯¯¯¯¯z2>2(z1¯¯¯¯¯z1+z2¯¯¯¯¯z2)−2a
⇒2a≥z1¯¯¯¯¯z1+z2¯¯¯¯¯z2−z1¯¯¯¯¯z2−z2¯¯¯¯¯z1
⇒2a≥|z1−z2|2