For equation |z−z1|2+|z−z2|2=a to represents a circle, which of the following is/are true
A
Centre of the circle is (z1+z2)4.
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
Centre of the circle is (z1+z2)2.
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
The circle is real, if 2a≥|z1−z2|2.
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
The circle is real, if 4a≥|z1−z2|2.
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct options are B Centre of the circle is (z1+z2)2. C The circle is real, if 2a≥|z1−z2|2. |z−z1|2+|z−z2|2=a ⇒z¯¯¯z−(¯¯¯¯¯z1+¯¯¯¯¯z22)z−(z1+z22)¯¯¯z+z1¯¯¯¯¯z1+z2¯¯¯¯¯z2−a2=0⋯(1) Equation (1) is of the form of z¯¯¯z+¯¯¯az+a¯¯¯z+r=0. Hence centre =(z1+z2)2. Also, Equation (1) will represents a real circle if a¯¯¯a−r>0 ⇒|a|2−r>0 ⇒|z1+z2|24≥z1¯¯¯¯¯z1+z2¯¯¯¯¯z2−a2 ⇒z1¯¯¯¯¯z1+z1¯¯¯¯¯z2+¯¯¯¯¯z1z2+z2¯¯¯¯¯z2>2(z1¯¯¯¯¯z1+z2¯¯¯¯¯z2)−2a ⇒2a≥z1¯¯¯¯¯z1+z2¯¯¯¯¯z2−z1¯¯¯¯¯z2−z2¯¯¯¯¯z1 ⇒2a≥|z1−z2|2