The correct options are
A limx→1f(x) exists if a=−2
B limx→0g(x)=1
C If limx→1f(x) exists and finite, thenlimx→1f(x)=43
For f(x)=3x2+ax+a+1x2+x−2,
As x→1, denominator →0. Hence, Numerator →0
⇒3+a+a+1=0⇒a=−2
Now, limx→1f(x)=limx→13x2−2x−1x2+x−2
=limx→1(3x+1)(x−1)(x+2)(x−1)
=43
limx→0g(x)=limx→0log(1+x+x2)+log(1−x+x2)secx−cosx
=limx→0log[(1+x2)2−x2]1−cos2xcosx
=limx→0log(1+x2+x4)sinxtanx
=limx→0log(1+x2+x4)x2(1+x2)x2(1+x2)1sinxxtanxxx2
=1