The correct option is C (I),(II) and (III)
Given : f(x)=x+1∫−1(x−tx2)f(t) dt
⇒f(x)=x+x1∫−1f(t) dt−x21∫−1tf(t) dt⇒f(x)=ax−bx2
Where a=1+1∫−1f(t) dt, b=1∫−1tf(t) dt
Now,
a=1+1∫−1f(t) dt⇒a=1+1∫−1at−bt2 dt⇒a=1−2b3⋯(1)b=1∫−1tf(t) dt⇒b=1∫−1t(at−bt2) dt⇒b=2a3⋯(2)
From equation (1) and (2), we get
a=1−4a9⇒a=913⇒b=613⇒f(x)=9x−6x213⇒f′(x)=9−12x13⇒f′(−13)=1313=1
limx→0f(x)=f(0)=0
As f(x) is a polynomial of degree 2, so it is continuous and derivable on R
As it is a downward parabola, so it has a finite maximum value.