I:
Given f(z)=sinzz2=1z2[z−z33!+z55!....] ⇒f(z)=1z−z3!+z35!.... ∴ residue of the pole (at z=0) = Coefficient of (1z−0) in power series expansion =1
II: f(z)=sinzz2=1z2[z−z33!+z55!....] ⇒f(z)=1z−z3!+z35!−....
So Z=0 is pole of order 1 (smile pole)
So, [Resf(z);(z=0)]=limz→0(Z−0)f(z) =limz→0(sinZZ)=1