For given vectors, a=2^i−^j+2^k and b=−^i+^j−^k, find the unit vector in the direction of the vector a+b.
The given vectors are a=2^i−j+2^k and b=−^i+^j−^k
∴ a+b=(2^i−^j+2^k)+(−^i+^j−^k)
Two vectors can be added by adding ^i,^j and ^k components.
∴ a+b=[2^i+(−^i)]+[(−^j)+^j]+[(2^k)+(−^k)]=(2^i−^i)+(−^j+^j)+(2^k−^k)=^i+0^j+^k=^i+^k
Comparing with X=x^i+y^j+z^k, we get x=1, y=0, z=1
∴ Magnitude |a+b|=√x2+y2+z2=√12+02+12=√2
Hence, the unit vector in the direction of (a+b),
(a+b)|a+b|=(^i+^k)√2=1√2 ^i+1√2 ^k