For hyperbola x225−y216=1, and circle x2+y2=100, the ray from one of concyclic points passes through a focus.
The point of intersection is:
y2=100−x2 ...... (1)
And, x225−y216=1
x225−100−x216=1
Or,41x225∗16=11616
Or,x=±10√29√41
And Using (1) we get:
y=±20√3√41
The point is (10√29√41,−20√3√41)
And we know, e2=1+1625
Or, e=√415
So, focus: (−√41,0)
∴ Equation of line is:
(y−0)=−20√3√41−0+10√29√41+√41(x+√41)
y=−20√310√29+41(x−√41)
⇒(10√29+41)y=−20√3x−20√123
⇒20√3x+(10√29+41)y+20√123=0