For (i)A=[cosαsinα−sinαcosα], verify that A'A=I.
For (ii)A=[sinαcosα−cosαsinα], verify that A'A=I.
Here, A=[cosαsinα−sinαcosα]⇒A′=[cosαsinα−sinαcosα]′=[cosα−sinαsinαcosα]∴A′A=[cosα−sinαsinαcosα][cosαsinα−sinαcosα]
=[(cosα)(cosα)+(sinα)(sinα)(cosα)(sinα)+(−sinα)(cosα)(sinα)(cosα)+(cosα)(−sinα)sin2α+cos2α]=[cos2α+sin2αcosαsinα−sinαcosαsinαcosα−cosαsinαsin2α+cos2α]=[1001]=I.[∵sin2α+cos2α=1]
Here, A=[sinαcosα−cosαsinα]⇒A′=[sinαcosα−cosαsinα]=[sinα−cosαcosαsinα]
∴A′A=[sinα−cosαcosαsinα][sinαcosα−cosαsinα]=[(sinα)(sinα)+(−cosα)(−cosα)(sinα)(cosα)+(−cosα)(sinα)(sinα)(cosα)+(sinα)(−cosα)(cosα)(cosα)+(sinα)(sinα)]=[sin2α+cos2αsin α cos α−cosα sin αsin α cos α−sin α cos αcos2α+sin2 α]=[1001]=1.[∵sin2α+cos2α=1]
Hence, we have verified that A'A=I.