For k=1√50, find a, b, c such that PPT=I where, P=⎡⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢⎣233ka−13−4kb23−5kc⎤⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥⎦
Prove that:(i) 13+√7+1√7+√5+1√5+√3+1√3+1=1(ii) 11+√2+1√2+√3+1√3+√4+1√4+√5+1√5+√6+1√6+√7+1√7+√8+1√8+√9=2
Subtract: (i) 5ab+4ac−6a+15c−15 from 10ab+22bc−13a−14b−16c−24 (ii) 5a2b+10b2c2−10b2c−21ab+32 from 50−20b2c2−4bc−ac−5ab. [2 MARKS]