The correct option is D −1
Let z=x+iy
Hence, |z−1|=1
(x−1)2+y2=1
Hence by using parametric equation of circle.
x−1=cosθ
x=1+cosθ and
y=sinθ
Then, z=(1+cosθ)+isinθ
Let θ=π2
Then, z=1+i ...(i)
Hence, z−1=i and
2−2i1z
=2(1−i1+i)
=2(1+i−i1+i)
=21+i
=1−i...(ii)
Hence, z−12−2iz
=i1−i
=i(1+i)2
=i−12
=1√2(−1+i√2)
=1√2.ei3π4
Hence, tan(3π4)
=−1.