For m, n∈N, Let A(n) = 16(cosnθ−sinnθ) and B(m) = 16(cosmθ+sinmθ) and log102=0.3010 Number of solution for θ∈[0,2π] such that A(4)=B(3) is equal to
A
2
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
6
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
4
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
3
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is A2 A(n)=16(cosnθ−sinnθ)B(m)=16(cosmθ+sinmθ)A(4)=B(3)⇒16(cos4θ−sin4θ)=6(cos3θ+sin3θ)⇒16(cos2θ+sin2θ)(cos2θ−sin2θ)=16(cos3θ+sin3θ)⇒(cosθ+sinθ)(cosθ−sinθ)=(cosθ+sinθ)(cos2θ+sin2θ−sinθcosθ)⇒cosθ−sinθ=1−sinθcosθ⇒cosθ−sinθ−1+sinθcosθ=0⇒cosθ(1+sinθ)−1(1+sinθ)=0∴1+sinθ=0,cosθ−1=01+sinθ=0⇒sinθ=−1,θ=3π2cosθ=1⇒θ=2π