No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
4π2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
π2
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
π
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is Cπ2 I=∫2π0xsin2nxsin2nx+cos2nxdx...(1)⇒I=∫2π0(2π−x)sin2n(π−x)sin2π(2π−x)+cos2n(2π−x)dx[Using ∫a0f(x)dx=f(a−x)dx]I=∫2π0(2π−x)sin2nxsin2nx+cos2nx...(2)
Adding (1) and (2) we get 2I=∫2π02πsin2nxsin2nx+cos2nxdx⇒I=π∫2π0sin2nxsin2nx+cos2nxdx⇒I=2π∫π0sin2nxsin2nx+cos2nxdx[Using ∫2a0f(x)dx=2∫a0f(x)dx if f(2a−x)=f(x)]⇒I=4π∫π20sin2nxsin2nx+cos2nxdx...(3)
[Using above property again] ⇒I=4π∫π20cos2nxcos2nx+sin2nxdx...(4) [Using ∫a0f(x)dx=f(a−x)dx]
Adding (3) and (4) we get 2I=4π∫π201.dx=4π(π2−0)=2π2⇒I=π2