Let S= nC0−22⋅ nC1+32⋅ nC2−42 nC3+⋯ upto (n+1) terms
S=n∑r=0(−1)r⋅(r+1)2 nCr
=n∑r=0(−1)r⋅(r2+2r+1) nCr
=n∑r=0(−1)r⋅(r(r−1)+3r+1) nCr
=n∑r=0(−1)r⋅r(r−1)⋅ nCr+3n∑r=0(−1)r⋅rCr+n∑r=0(−1)r⋅ nCr
=n∑r=2(−1)r⋅r(r−1)⋅ nCr+3n∑r=1(−1)r⋅rCr+n∑r=0(−1)r⋅ nCr
=n(n−1)n∑r=2(−1)r n−2Cr−2+3nn∑r=1(−1)r n−1Cr−1+(1−1)n
=n(n−1)n∑r=2 n−2Cr−2⋅(−1)r−2−3nn∑r=1 n−1Cr−1⋅(−1)r−1+0
=0 [∵n∑r=0ncrar=(1+a)n]