For n an integer, the argument of Z=(√3+i)4n+1(1−i√3)4n is
Z=(−1+√3ii)4n+1(1−i√3)4n
Z=(2ωi)4n+1(−2ω)4n
=2ωi4n+1×(2ω−2ω)4n
=2ωi×1
=−1+√3ii
=√3+i∴arg|z|=tan−1(1√3)=π6
The argument of the complex number -1-i√3