Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
If n is odd, then In=π2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
If n is even, then In=π
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
If n is odd, then In=0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is A If n is even, then In=0 In=π∫−πsinnx(1+2x)sinxdx -------(1) Using b∫af(x)dx=b∫af(a+b−x)dx In=π∫−πsinnx(1+2−x)sinxdx --------(2) Adding (1) & (2) 2In=π∫−πsinnxsinxdx Since π∫0sinnxsinxdx=0∫−πsinnxsinxdx In=π∫0sinnxsinxdx In+2=π∫0sin(n+2)xsinxdx In+2−In=π∫0sin(n+2)x−sinnxsinxdx =2π∫0cos(n+1)xdx=0 for n∈N In+2=In ifnis even,In=I0=0ifn is odd,In=I1=π}AsIn=π∫0sinnxsinxdx