(→p⋅→r)→q−(→q⋅→r)→p+(→q⋅→r)→q=(x2+y2)→q+(14−4x−6y)→p
∴→p⋅→r+→q⋅→r=x2+y2 ⋯(1)
and −→q⋅→r=14−4x−6y ⋯(2)
From (1)+(2)
→p⋅→r=x2+y2−4x−6y+14 ⋯(3)
Since (→r⋅→r)→p=→r,
taking dot product with →r, we get
(→r⋅→r)(→p⋅→r)=(→r⋅→r)
⇒→p⋅→r=1
∴ From (3),
x2+y2−4x−6y+14=1⇒(x−2)2+(y−3)2=0⇒x=2,y=3
Hence, x+y=5