For observations x1,x2,x3,..........,xn, if ∑ni=1(xi+1)2=9n and ∑ni=1(xi−1)2=5n., then standard deviation of the data is
√5
Given that
∑ni=1(xi+1)2=9n=∑ni=1(x2i+2xi+1)=9n⇒∑x2i+2∑xi+n=9n⇒∑x2i+2∑xi=8n........(1)∑ni=1(xi−1)2=∑ni=1(x2i−2xi+1)=5n⇒∑x2i−2∑xi+n=5n⇒∑x2i−2∑xi=4n........(2)(1)+(2)⇒2∑x2i=12n⇒∑x2i=6n(1)−(2)⇒4∑xi=4n⇒∑xi=nσ=√∑x2in−(∑xin)2=√6−1=√5