For observations x1,x2,x3,..........,xn, if ∑ni=1(xi+1)2=9n and ∑ni=1(xi−1)2=5n., then standard deviation of the data is
√5
Given that
\( \sum_{i=1}^{n} (x_i+1)^2=9n = \sum_{i=1}^{n}(x_i^2+2x_i+1)=9n\\
\Rightarrow \sum x_i^2 + 2 \sum x_i+n=9n\\
\Rightarrow \sum x_i^2 + 2 \sum x_i =8n........(1)\\
\sum_{i=1}^{n} (x_i-1)^2 = \sum_{i=1}^{n}(x_i^2-2x_i+1)=5n\\
\Rightarrow \sum x_i^2 - 2 \sum x_i+n=5n\\
\Rightarrow \sum x_i^2 - 2 \sum x_i =4n........(2)\\
(1) + (2) \Rightarrow 2 \sum x_i^2=12n \Rightarrow \sum x_i^2=6n\\
(1) - (2) \Rightarrow 4 \sum x_i = 4n \Rightarrow \sum x_i=n\\
\therefore \frac{\sum x_i}{n}=1=\bar x\\
\sigma =\sqrt{\frac{\sum (x_i-\bar x)^2}{n}}=\sqrt{\frac{\sum (x_i-1)^2}{n}}=\sqrt{\frac{5n}{n}}=\sqrt{5}\)