wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

For observations x1,x2,x3,..........,xn, if ni=1(xi+1)2=9n and ni=1(xi1)2=5n., then standard deviation of the data is


A

3

No worries! We‘ve got your back. Try BYJU‘S free classes today!
B

5

Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C

2

No worries! We‘ve got your back. Try BYJU‘S free classes today!
D

10

No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is B

5


Given that
\( \sum_{i=1}^{n} (x_i+1)^2=9n = \sum_{i=1}^{n}(x_i^2+2x_i+1)=9n\\
\Rightarrow \sum x_i^2 + 2 \sum x_i+n=9n\\
\Rightarrow \sum x_i^2 + 2 \sum x_i =8n........(1)\\

\sum_{i=1}^{n} (x_i-1)^2 = \sum_{i=1}^{n}(x_i^2-2x_i+1)=5n\\
\Rightarrow \sum x_i^2 - 2 \sum x_i+n=5n\\
\Rightarrow \sum x_i^2 - 2 \sum x_i =4n........(2)\\
(1) + (2) \Rightarrow 2 \sum x_i^2=12n \Rightarrow \sum x_i^2=6n\\
(1) - (2) \Rightarrow 4 \sum x_i = 4n \Rightarrow \sum x_i=n\\

\therefore \frac{\sum x_i}{n}=1=\bar x\\
\sigma =\sqrt{\frac{\sum (x_i-\bar x)^2}{n}}=\sqrt{\frac{\sum (x_i-1)^2}{n}}=\sqrt{\frac{5n}{n}}=\sqrt{5}\)


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Practice Set 1
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon