For positive integers n1,n2 the value of the expression
is a real number if and only if (1+i)n1+(1+i3)n1+(1+i5)n2(1+i7)n2 where i=2√−1 is a real number if and only if
Using i3=-i,i5=i and i7=-i, we can write the
given expression as
(1+i)n1+(1+i3)n1+(1+i5)n2(1+i7)n2 where i=2√−1
=2[cn10+cn11i2+cn11i4+....]+2[cn20+cn21i2+cn21i4+....]
=2[cn10-cn11+cn11+....]+2[cn20-cn21+cn21+....]
This is a real number irrespective of values of n1 and n2.