For positive real numbers a, b, and c, the minimum value of b+ca,c+ab,a+bc is
For 3 positive real number a,b,c
AM=a+b+c3,GM=3√abc
HM=3abcab+bc+ca=31a+1b+1c
We know HM≤GM≤AM
So a+b+c3≥3abcab+bc+ca
(ab+bc+ca)(a+b+c)abc≥9
(a+b+c)(1a+1b+1c)≥9
For minimum (a+b+c)(1a+1b+1c)=9
Now b+ca+c+ab+a+bc
b+c+a−aa+c+a+b−bb+a+b+c−cc
=(a+b+c)(1a+1b+1c)−3
=9−3=6
Option B