The correct option is A (−3,−273)
Given: y=37x2+222x−51
Since coefficient of x2=37>0, we get upward facing parabola and its minimum value lies at vertex.
Here y=37x2+222x−51
Differentiate both sides w.r.t. x, we get
dydx=37(2)x+222
dydx=74x+222
For critical point or x-coordinate of vertex, put dydx=0
⇒74x+222=0
⇒x=−3
and ymin=37(−3)2+185(−3)−51
⇒ymin=333−555−51=−273
Hence ymin=−273