For real constants a,b,c,d, suppose f(x) is a function of the form f(x)=ax8+bx6+cx4+dx2+15x+1x for x≠0. If f(5)=2, then the value of f(–5) is
Open in App
Solution
xf(x)=ax8+bx6+cx4+dx2+15x+1⋯(1)
Replacing x by −x, −xf(−x)=ax8+bx6+cx4+dx2−15x+1 ⇒xf(−x)=−ax8−bx6−cx4−dx2+15x−1⋯(2)
Adding (1) and (2), we get x(f(x)+f(–x))=30x ⇒f(x)+f(–x)=30
At x=5, we have f(5)+f(–5)=30 ∴f(–5)=28