The correct option is D 7
Let L1:x−α1=y−12=z−13=λ and L2:x−4β=y−63=z−73=μ
Let point on line L1 be (λ+α,2λ+1,3λ+1) and a point on line L2 be (μβ+4,3μ+6,3μ+7)
For point of intersection
λ+α=μβ+4, 2λ+1=3μ+6 & 3λ+1=3μ+7
λ=1 and μ=−1
⇒1+α=−β+4⇒α+β=3
∴ Point of intersection (1+α,3,4)
Above point lies on the plane x+2y−z=8,
⇒ 1+α+6−4=8 ⇒ α=5,β=−2
We get, α−β=7