wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

For real numbers α,β,γ and δ, if
(x21)+tan1(x2+1x)(x4+3x2+1)tan1(x2+1x)dx=α loge(tan1(x2+1x))+β tan1(γ(x21)x)+δ tan1(x2+1x)+C
where C is an arbitrary constant, then the value of 10(α+βγ+δ) is equal to

Open in App
Solution

I=x21(x4+3x2+1)tan1(x2+1x)dx+1x4+3x2+1dx

=11x2[(x+1x)2+1]tan1(x+1x)dx+dxx4+3x2+1I1I2
Let tan1(x+1x)=t
Then I1=dtt
I1=ln|t|=lntan1(x+1x)

Now, I2=dxx4+3x2+1
=12(x2+1)(x21)x4+3x2+1dx
=12⎢ ⎢ ⎢1+1x2x2+3+1x2dx11x2x2+3+1x2dx⎥ ⎥ ⎥
=12⎢ ⎢ ⎢ ⎢ ⎢1+1x2(x1x)2+5(11x2)(x+1x)2+1dx⎥ ⎥ ⎥ ⎥ ⎥x1x=ux+1x=v
=12⎢ ⎢ ⎢duu2+(5)2dvv2+1⎥ ⎥ ⎥
I2=125tan1⎜ ⎜ ⎜x1x5⎟ ⎟ ⎟12tan1(x+1x)
I=I1+I2=lntan1(x+1x)+125ln(x215x)12tan1(x2+1x)+C

α=1,β=125,γ=15,δ=12

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Sum of Infinite Terms of a GP
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon