I=∫x2−1(x4+3x2+1)tan−1(x2+1x)dx+∫1x4+3x2+1dx
=∫1−1x2[(x+1x)2+1]tan−1(x+1x)dx+∫dxx4+3x2+1↓↓I1I2
Let tan−1(x+1x)=t
Then I1=∫dtt
⇒I1=ln|t|=ln∣∣∣tan−1(x+1x)∣∣∣
Now, I2=∫dxx4+3x2+1
=12∫(x2+1)−(x2−1)x4+3x2+1dx
=12⎡⎢
⎢
⎢⎣∫1+1x2x2+3+1x2dx−∫1−1x2x2+3+1x2dx⎤⎥
⎥
⎥⎦
=12⎡⎢
⎢
⎢
⎢
⎢⎣∫1+1x2(x−1x)2+5−∫(1−1x2)(x+1x)2+1dx⎤⎥
⎥
⎥
⎥
⎥⎦↓↓x−1x=ux+1x=v
=12⎡⎢
⎢
⎢⎣∫duu2+(√5)2−∫dvv2+1⎤⎥
⎥
⎥⎦
I2=12√5tan−1⎛⎜
⎜
⎜⎝x−1x√5⎞⎟
⎟
⎟⎠−12tan−1(x+1x)
I=I1+I2=ln∣∣∣tan−1(x+1x)∣∣∣+12√5ln(x2−1√5x)−12tan−1(x2+1x)+C
∴α=1,β=12√5,γ=1√5,δ=−12