For real numbers α,β,γandδ, if
∫x2-1+tan-1x2+1xdxx4+3x2+1tan-1x2+1x=αlogetan-1x2+1x+βtan-1γx2+1x+δtan-1x2+1x
where C is an arbitrary constant, then the value of 10(α+βγ+δ) is equal to
Step1. Divide the integration into parts:
I=∫x2-1+tan-1x2+1xdxx4+3x2+1tan-1x2+1x=∫x2-1dxx4+3x2+1tan-1x2+1x+∫tan-1x2+1xdxx4+3x2+1tan-1x2+1x=∫x2-1dxx4+3x2+1tan-1x2+1x+∫dxx4+3x2+1=I1+I2WhereI1=∫(x2-1)dx(x4+3x2+1)tan-1(x2+1x)andI2=∫dx(x4+3x2+1)
Step2. Calculate the value of I1:
I1=∫(x2-1)dx(x4+3x2+1)tan-1(x2+1x)=∫(x2-1)dxx2(x2+3+1x2)tan-1(x2+1x)=∫(x2-1x2)dx(x2+3+1x2)tan-1(x2+1x)=∫(1-1x2)dx(x2+2x1x+1x2+1)tan-1(x2+1x)=∫(1-1x2)dx(x+1x2+12)tan-1(x+1x)=∫dttSubstitutetan-1(x+1x)=t⇒(1-1x2)dx((x+1x)2+12)=dt=loget+c1∵∫dtt=loge|t|=logetan-1(x+1x)+c1___(1)
Step3.Calculate the value of I2:
I2=∫dx(x4+3x2+1)=∫dxx2(x2+3+1x2)=∫1x2×22dx(x2+3+1x2)=12∫2x2+1-1dx(x2+3+1x2)=12∫1x2+1-1+1x2dx(x2+3+1x2)=12∫1x2+1-1-1x2dx(x2+3+1x2)=12∫1x2+1dx(x2+3+1x2)-12∫1-1x2dx(x2+3+1x2)=12∫1+1x2dx(x2-2x1x+1x2+5)-12∫1-1x2dx(x2+2x1x+1x2+1)=12∫1+1x2dxx-1x2+(5)2-12∫1-1x2dx(x+1x)2+12=12∫duu2+(5)2-12∫dv(v)2+12Substitutex-1x=u⇒(1+1x2)dx=duandx+1x=v⇒(1-1x2)dx=dv=1215tan-1u5-tan-1v+c2∵∫dx(x)2+(a)2=1atan-1(xa)=1215tan-1x-1x5-tan-1x+1x+c2=125tan-1x2-15x-12tan-1x2+1x+c2_______(2)
Step4. Calculate the value of α,β,γ,δ:
∫x2-1+tan-1x2+1xdxx4+3x2+1tan-1x2+1x=αlogetan-1x2+1x+βtan-1γx2+1x+δtan-1x2+1x⇒logetan-1x+1x+125tan-1x2-15x-12tan-1x2+1x+C=αlogetan-1x2+1x+βtan-1γx2+1x+δtan-1x2+1x⇒α=1[Substitutethevaluefrom(1)and(2)]β=125γ=15[Comparelefthandsideandrighthandside]δ=-12
Step5. Calculate the value of 10α+βγ+δ
10α+βγ+δ=101+12515+-12[Substitutethevalueofα,β,γ,δ]=101+110-12=10610=6
Hence, the value of10(α+βγ+δ)=6