The correct option is B b≥a≥c
Let y=(x−b)(x−c)(x−a)
∴ (x−a)y=x2−(b+c)x+bc
∴ x2−(b+c+y)x+(bc+ay)=0
For roots to be real,
(b+c+y)2−4(bc+ay)>0
∴ (b+c)2+y2−(4bc+4ay)+2(b+c)y>0
∴ y2+2(b+c−2a)y+(b−c)2>0 ----------(1)
For any value of y y2&(b−c)2>0
For (1) to be +ve for all y, 2(b+c-2a)=0
∴ b+c−2a=0
∴ b−a+c−a=0
∴ b−a=a−c
∴ b,a,c are in AP.
∴ either b>a>c or b<a<c
Of the given options : b→a→c