For real values of x, the range of x2+2x+1x2+2x−1 is
Let y=x2+2x+1x2+2x−1
⇒yx2+2xy−y=x2+2x+1
⇒(y−1)x2+2x(y−1)−(y+1)=0
B2−4ac≥0 & y≠1,y≠0