For real x, the function (x−a)(x−b)(x−c) will assume all real values provided
Let y=(x−a)(x−b)(x−c)
y(x−c)=(x−a)(x−b)
x2−(a+b+y)x+(ab+cy)=0
x is real if Discriminant≥0
(a+b+y)2−4(ab+cy)≥0
a2+b2−2ab+y2+2y(b+a−2c)≥0
y2+2y(a+b−2c)+(a−b)2≥0
In any quadratic az2+bz+c, if a>0, then az2+bz+c≥0 for every z if b2−4ac<0.
4(a+b−2c)2−4(a−b)2<0
(a+b−2c)2−(a−b)2<0
c2−(a+b)c+ab<0
(c−a)(c−b)<0
This shows that c lies between a and b, therefore, a<c<b or a>c>b.