The correct option is D a≤c≤b
Let y=x2−(a+b)x+abx−c
⇒yx−cy=x2−(a+b)x+ab⇒x2−(a+b+y)x+(ab+cy)=0
For real roots, D≥0
⇒(a+b+y)2−4(ab+cy)≥0⇒(a+b)2+y2+2(a+b)y−4ab−4cy≥0⇒y2+2(a+b−2c)y+(a−b)2≥0
Which is true for all real values of y.
∴D≤04(a+b−2c)2−4(a−b)2≤0⇒4(a+b−2c+a−b)(a+b−2c−a+b)≤0⇒(2a−2c)(2b−2c)≤0
⇒(a−c)(b−c)≤0⇒(c−a)(c−b)≤0
⇒c must lie between a and b
i.e. a≤c≤b or b≤c≤a