For the block moving as shown in figure, maximum compression in the spring will be approximately: [Take g=10m/s2,√1552−40√3≈38.50&10+2√3≈13.5 for calculation. Neglect the effect of corner]
A
2.5m
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
3m
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
2.1m
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
2m
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is A2.5m Let the maximum compression in spring be x. In this state, the block is momentarily at rest i.e v=0.
Displacement of block along horizontal surface is d1=2m; Displacement of block along inclined surface is d2=(2+x)m On applying Work Energy theorem on the block from initial position (u=10m/s) to final position (v=0),
Wall Forces =ΔK.E ⇒Wfriction+Wgravity+Wspring=K.Ef−K.Ei ⇒[−μmgd1−μN(d2+x)]−mg((d2+x)sin30)−12kx2=0−12mu2...(i) Here: Wfriction=−μmgd1−μN(d2+x) [∵N=mgcos30∘ on the incline] =(−0.2×2×10×2)−(0.2×2×10×√32×(2+x)) Wgravity=−mg(d2+x)sin30∘ =−(2×10×(2+x)×12) Wspring=−12kx2=−(12×10×x2) ΔKE=−12×2×102 Substituting the values in Eq.(i), ⇒−8−2√3(2+x)−10(2+x)−5x2=−100 ⇒−8−4√3−2√3x−20−10x−5x2=−100 ⇒5x2+x(10+2√3)−72+4√3=0 ⇒x=−(10+2√3)±√(112+40√3+1440)−80√310 Rejecting the −ve value as x can't be negative, ⇒x=−13.46+√1552−40√310 ⇒x=−13.46+38.5010 ∴x≃2.50 Maximum compression in the spring is approximately 2.5m.