The correct option is B (8,−4) and (−8,4)
Given curve is x2+4xy+8y2=64.....(i)
On differentiating w.r.t x ,we get
2x+4(y+xdydx)+16ydydx=0
⇒ 2x+4y+(4x+16y)dydx=0
⇒ dydx=−(x+2y)2(x+4y)
Since, tangent are parallel to x-axis only
ie., dydx=0
⇒ −(x+2y)2(x+4y)=0
⇒ x+2y=0.....(ii)
Now, on putting the values of x from eqs. (i) in (ii) we get
4y2−8y2+8y2=64
⇒ y2=16
⇒ y=±4
from eq. (ii)
When y=4,x=−8
and when y=−4,x=8
Hence, required points are (−8,4) and (8,−4)