Consider the given function:
y=4x3−2x5
dydx=ddx(4x3−2x5)
=3∗4x2−5∗2x4
point(x,y)
y1=mx1eq...1
y=4x3−2x5eq...2
m=12x2−10x4
putting the value eq….(1)
y1=(4x2−2x4)x
y1=(4x3−2x5) eq...3
Solving for the from (2) and (3 )
∴4x13+10x14
∴4x13−2x15
[x1=±1]
forx1=±1putineq..y=4x3−2x5
x1=+1
y=4(1)3+2(1)5=6
x1=−1
y=4(−1)3+2(−1)5=−6
pointare(1,6)(−1,−6)
Hence this is the answer.