The correct option is C curve has two vertical asymptotes
y=3x3+x2+x−5x2−1
⇒y=(x−1)(3x2+4x+5)(x−1)(x+1)
limx→−1+y(x)=∞
⇒x=−1 is a vertical asymptote.
limx→1y(x)=6
⇒x=1 is not a vertical asymptote.
Also, limx→±∞3x3+x2+x−5x2−1=±∞ (which is not a fixed value)
So, there is no horizontal asymptote.
For oblique asymptotes :
Let y=mx+c be oblique asymptote.
Then m=limx→±∞f(x)x
⇒m=limx→±∞3x3+x2+x−5x2−1⋅1x=3
and c=limx→±∞(f(x)−mx)
⇒c=limx→±∞3x3+x2+x−5x2−1−3x=1
So, the only oblique asymptote is y=3x+1