2dydx−ysecx=y3tanx⇒1y3dydx−secx2y2=tanx
Put −12y2=v⇒1y3dy=dv
∴dvdx+vsecx=tanx ...(1)
Here P=secx⇒∫Pdx=∫secxdx=log(secx+tanx)
∴I.F.=elog(secx+tanx)=(secx+tanx)
Multiplying (1) by I.F. we get
(secx+tanx)dvdx+vsecx(secx+tanx)=tanx(secx+tanx)
Integrating both sides, we get
v(secx+tanx)=∫tanx(secx+tanx)dx+c=−x+(secx+tanx)+c
⇒1y2=−1+(c+x)cot(x2+π4)
Then 4tanθ=4tanπ4=4