wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

For the differential equation 2dydxysecx=y3tanx, the solution is 1y2=1+(c+x)cot(x2+θ). Find 4tan(θ).

Open in App
Solution

2dydxysecx=y3tanx1y3dydxsecx2y2=tanx
Put 12y2=v1y3dy=dv
dvdx+vsecx=tanx ...(1)
Here P=secxPdx=secxdx=log(secx+tanx)
I.F.=elog(secx+tanx)=(secx+tanx)
Multiplying (1) by I.F. we get
(secx+tanx)dvdx+vsecx(secx+tanx)=tanx(secx+tanx)
Integrating both sides, we get
v(secx+tanx)=tanx(secx+tanx)dx+c=x+(secx+tanx)+c
1y2=1+(c+x)cot(x2+π4)
Then 4tanθ=4tanπ4=4

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Methods of Solving First Order, First Degree Differential Equations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon